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Monte Carlo simulations with indefinite and complex-valued measures
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A method is presented to tackle the sign problem in the simulations of systems having indefinite
or complex-valued measures. In general, this approach is shown to yield statistical errors smaller
than the crude Monte Carlo using absolute values of the original measures. Exactly solvable, one-
dimensional Ising models with complex temperature and complex activity illustrate the considerable
improvements and the workability of this method even when the crude one fails.

PACS number(s): 05.30.—d, 02.50.—r, 73.40.Gk

I. INTRODUCTION

Numerical simulations have opened up new directions
in the study of many interesting problems, offering an
alternative and complementary method when the prob-
lems are analytically managable and the only system-
atic method in more complicated problems. However,
in the case of general dynamical systems even numeri-
cal methods have difficulty due to the fundamental “sign
problem” when the measures of generating functions are
not positive definite or are complex [1], invalidating the
probabilistic interpretation of conventional Monte Carlo
(MC) simulations. Many interesting and important phys-
ical systems, unfortunately, belong to this class with the
sign problem. Examples include real-time path integrals
of quantum mechanics and quantum field theory, lattice
QCD at finite temperature and density, chiral gauge the-
ory, and quantum statistical systems with fermions. We
will consider later the Ising models in a complex magnetic
field or with complex temperature.

Many approaches have been proposed for the sign
problem but so far none is satisfactory. Complex
Langevin simulations [2] cannot be shown to converge
to the desire distributions and often fail to do so. Oth-
ers [3] are either restricted to too small a lattice, too
complicated, or not general enough or speculative.

Following is the crude approach of the average sign [4],
upon which we want to improve in the following section.
If the measure p(z) of a generating function suffers from
sign fluctuation then another positive definite function
p(z) must be chosen for the MC evaluation of the expec-
tation value of an observable ©,

() = / [0(2)p(z)/3(2))5(z) / / [o(2)/5(2)]5(2),
= ((@)/((1)- (1)

In general it is desirable to choose g independently of ©,
and we will concentrate on the estimate of the denomi-
nator ((1)) because of its appearance in all the measure-
ments. It is a simple variational problem to show that
the MC probability density, properly normalized, which
minimizes the variance of ((1)) which is o divided by the
square root of the number of independent configurations,
where

7t = [ 10(a)/5(e) ~ () ), (2)

must be
5(z) = |p(a)| / @1 (3)

The double angle brackets denote the average with re-
spect to p(z), which is not necessarily normalized. Thus
the sign of p(z) is now treated as part of the quantity
whose expectation is to be measured.

However, when the denominator ((1)) is vanishingly
small, o2, though minimized, is ~ 1 > ((1)) since
p/lp| = £1. Then the evaluation of (©) becomes un-
reliable unless the number of independent configurations
is many orders of magnitude greater than the large num-
ber 1/((1))2. The fluctuation of sign of the measure over
configuration space thus renders ineffective the sampling
guided by this crude MC method (3). This is the content
of the sign problem.

II. AN ALTERNATIVE APPROACH

To deal with complex integrands, of which indefinite
measures are special cases, we adopt the definition (2) of
the variance extended to the absolute values of complex
numbers. Statistical analysis from this definition is the
same as the standard analysis; except that the range of
uncertainty should now be depicted as the radius of an
“uncertainty circle” centered on some central value in the
complex plane. The variational proof leading to (3) also
remains intact.

We can write the generating function as integrals over
two configurational subspaces [ p(z) = [y [y p(X,Y).
For example, X and Y are the field values on two
nonoverlapping sublattices.

We will choose the subspace partition in such a way
that the multi-dimensional integral over Y can be evalu-
ated analytically or well approximated:

o) = [ p(x.1). ()

Y
In the example of the following section, due to the short
range interactions, Y is chosen to be the subspace of

configurations of noninteracting spins residing on even
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sites of the lattice, and an explicit expression for o can
thus be obtained.

As in the preceding section, one can easily prove that
the MC weight § that minimizes

o' = /X 10(X)/3(X) — (1)) 2 3(X), (5)
5(X) = [o(X)| / [ texr. (6)

It then follows that the variance for this new weight is
not bigger than that for p(X,Y),

o — g% = / lo(X)P? /&(X)
X

- [ [exnp sy,

-(/, 'Q(X)l)z - (/X/},lp(x,m)z,
-(/, /YP(X’Y)>2~ (/Xfylp(X,Yn)z,

(7)

the second line follows from (3) and (6); the last line is
from (4) and always less than or equal to zero because of
the triangle inequality. The equality occurs if and only
if p(X,Y) is semidefinite (either positive or negative) for
each X configuration. In particular, when there is no
sign problem in the first place, expression (5) yields the
same statistical deviation as the crude one.

Our approach is now clear. The measures are first
summed over a certain subspace, the integration (4)
above, to facilitate some partial phase cancellation. Ab-
solute values of these sums are then employed as the MC
sampling weights (6). The numerator in (1) can be ob-
tained from an appropriate derivative of the generating
function after the partial summation.

The choice for splitting of the integration domain is ar-
bitrary and its effectiveness depends on the physics of the
problem. The better the phase cancellation in the par-
tial sum is, the more important the new MC sampling.
One of the most convenient choices is the subspace of
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configurations over some maximal sublattice so that the
partial sum can be exactly evaluated or well approxi-
mated. In particular, if the interactions are short range
(not necessary nearest neighbor), maximal, noninteract-
ing sublattices can always be chosen to provide a natural
splitting.

III. ILLUSTRATIVE EXAMPLES

To illustrate our method, we study the one-
dimensional Ising model with complex activity or com-
plex temperature. The model is simple, exactly soluble
and yet sufficient for our purposes to show the improve-
ments over the crude method and the workability of our
approach when the crude one fails.

Although we are not interested in the models per se,
they are of much physical relevance. Information about
the phase transitions for physical values of parameters
in the thermodynamic limits can be learned from the
finite-volume partition functions in the complex plane.
The Yang-Lee edge singularity [5], the distribution of
Fisher zeros of the partition function, and hence their
analyticity, in the complex temperature plane [6] have
been studied. Furthermore, the one-dimensional models
of complex temperature can also be given the physical
interpretation of a two-state quantum tunneling system
in real time [7].

Owing to the nearest-neighbor interactions, the lattice
can be partitioned into odd and even sublattices, of which
the Ising spins s; (= %1) on site ¢ (€ the sublattice) do
not interact with each other. Absolute values of sums of
the complex-valued weights over the even sublattice, say,
are the new Monte Carlo weights.

In our simulations, periodic boundary condition is im-
posed on the chains of 128 Ising spins which become 64
spins after the partial summation. Ensemble averages are
taken over 1000 configurations, out of 2!2® possible con-
figurations. They are separated by 30 heat bath sweeps
which is sufficient for thermalization and decorrelation
in all cases except perhaps one, as will be demonstrated
shortly. A heat bath sweep is defined to be one run over
the chain, covering each spin in turn. The numbers of
trials per sweep are different before and after the partial
summation because the numbers of spins to be updated
are not the same. Both hot and cold initial configurations
are used and will be indicated when needed.

The results for real coupling J and purely imaginary
magnetic field H are summarized in Table I. They are

TABLE I. Purely imaginary magnetic field. The absolute statistical deviations are in square
brackets.
Coupling Magnetic field Denominator Relative deviation
0.1 0.1 improved (0.6242,0.0010) [0.0247] 3.96%
crude (0.4330,0.0295) [0.0285] 6.57%
0.01 0.1z improved (0.7187,0.0241) [0.020] 3.06%
crude (0.5088,0.0125) [0.0272] 5.35%
0.01 0.3: improved (0.0237,0.0120) [0.0316] 118.81%
crude (-0.0071,0.0163) [0.0316] 178.04%
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evaluated with the crude probability density
p{sh~ JI exp(Isisisr) (8)
all sites
and also with the improved density

e{sh~ 1[I

odd sites

|cosh (J(s; + 8i4+1) + H)| . (9)

The denominator measured is proportional to the parti-
tion function with different proportionality constants for
different MC weights. Thus the relevant quantity here
is the relative deviation defined as the ratio of the de-
viations in square brackets by the magnitudes of central
values. Autocorrelation of the denominator as a function
of number of sweeps is shown in Fig. 1 for both simula-
tions at particular parameter values.

Table II contains the results for complex coupling or
temperature with no external field. Both hot and cold
start results from the crude weights are quoted in the
last two lines. The improved MC weights are as in (9)
but with H = 0 and complex J; and the crude weights
as in (8) with J replaced by its real part.

The improved MC offers consistently smaller relative
deviations. Apart from this, further gains are obtained
over the crude method: only half of the spins, those re-
siding on the odd sites of the original lattice, now needed
to be considered; less number of sweeps, whose comput-
ing time again depends on the number of active spins,
required for thermalization and decorrelation; and ac-
ceptance rates are also slightly higher. If the gains in the
example of purely imaginary field are about one order of
magnitude or less (typically a factor of 6), they are much
more significant in the complex temperature illustration.
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FIG. 1. Real parts of autocorrelation of ((1)) for J = 0.5

and H = 0.1i from a total of 2 X 10° configurations. The
boxes are from crude weights; triangles, improved weights.
The imaginary parts of autocorrelation behave similarly.

TABLE II. Complex coupling and no external field.
Relative
Coupling Denominator deviations
(0.1,0.1) improved (0.2804,0.9464) [0.0051] 0.51%
crude (0.1387,0.4787) [0.0274] 5.50%
(0.01,0.1) improved  (0.9916,0.1284) [0.0005] 0.05%
crude (0.5154,0.0533) [0.0270] 5.22%
(0.01,0.5) improved  (0.7620,0.6361) [0.0039) 0.39%
crude (0.0155,0.0129) [0.0316]  156.65%
(-0.0292,0.0323) [0.0316] 72.65%

When the real part of the complex temperature is re-
duced relative to its imaginary part, the crude MC be-
haves worse as expected because of the increase in fluc-
tuation of the sign. The gain in relative deviations of
the improved over the crude weights is 100 times when
J = (0.01,0.1), for example. This translates into a fac-
tor of 10? in configuration number if the error is inversely
proportional to square root of the number of independent
configurations. At the coupling value J = (0.01,0.5), in
particular, the crude MC for both cold and hot starts
behaves badly. But the improved MC continues to work
very well. It gives a definite nonzero value, while within
the statistical errors given by the former, this value of J
could have been taken as a zero of the partition function.
The autocorrelation in Fig. 2 shows that the noise is too
overwhelming in the crude simulation to tell whether 30
sweeps are sufficient for thermalization or not.

Of all the coupling values presented in Table II, the
last one also corresponds to the smallest value of the real
part of the inverse of correlation length, Re(¢71) = 0.6,
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FIG. 2. As with Fig. 1 but with J = (0.01,0.5) and H =
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TABLE III. Complex coupling.

Coupling Magnetization per spin Susceptibility per spin

(0.1,0.1) exact (0,0 (1.1971,0.2427)
improved (0.0007,0.0000) [0.0024] (1.1921,0.2459) [0.0356]
crude (-0.0032,0.0016) [0.0062] (1.1651,0.2883) [0.1460]

(0.01,0.1) exact (0,0) (0.9999,0.2027)
improved (-0.0006,-0.0001) [0.0021] (1.0481,0.2231) [0.0268]
crude (0.0023,-0.0080) [0.0055] (1.0868,0.1374) [0.1198]

(0.01,0.5) exact (0,0) (0.5512,0.8585)
improved (-0.0031,-0.0047) [0.0027] (0.5604,0.8163) [0.0428]
crude (-0.0522,0.0820) [0.2074] (0.6808,5.4507) [9.2788]

(0.0123,-0.0723) [0.0830]

(1.5323,1.3885) [2.3122]

which is evaluated from the two eigenvalues of the trans-
fer matrix [8]. From these eigenvalues we found that the
absolute value of the partition function decreases with
the couplings in the order presented [9]. And this is also
the reason why the sign problem is getting worse for the
crude weight.

J

0

{K ({s})
configs

odd sites

s}

{ K({s}) [
configs

We have presented some measurements in Table III
evaluated by exact, improved MC and crude MC meth-
ods, respectively. Expressions for the magnetization and
susceptibility are obtained from appropriate derivatives
of functions of corresponding partition functions. With
the improved weights, we have

>

odd sites

where N, is the number of configurations and

cosh (J(s; + si41))
b ook (s sl

K({s}) = (12)

We have also numerically summed one more spin on the
remaining odd sublattice to further improve the improved
MC weight, but there is no significant gain over the re-
sults presented above.

IV. CONCLUDING REMARKS

We have presented a method towards a solution for
the sign problem. Owing to the sign cancellation in the
partial sums, our approach can offer substantial improve-
ments over the crude average-sign method and may work
even when the later fails, in the region of long correla-
tion length and vanishing partition function. A particu-
lar splitting for the summation is chosen for our illustra-
tive examples. And this is the natural choice of splitting
which always exists for short-ranged interactions. But
other choices of splitting are feasible and how effective
they are depends on the physics of the problems. The

> [si +tanh (J(si + s:41))] (10)
Z [s: + tanh (J(s; + 5i41))]
odd sites
- (11)
cosh? (J(si + sit1)) ’

approach of Ref. [7] could be considered as a special case
with a particular and nontrivial splitting where the inner
integration, over Y in our notation, was approximated in
a certain manner.

When the quantity to be averaged is not smooth on
the length scale of the crude weight function, there is an
additional source of systematic error in the average sign
method. The cancellation in the partial sums may reduce
this error by reducing the difference in length scales of the
measured quantities and that of the sampling weights.

Lastly, on a speculative note, the partial sums might
also be used as some preconditioning for the complex
Langevin simulation when it does not converge to the
raw complex measures.
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